
Combinatorics, 2015 Fall, USTC
Outlines in Weeks 1-2

******************************************************************************

Notice: This writing outlines the materials of our lectures, but often does not contain the
detailed proofs of statements we proved! All proofs present in lectures may appear in exams.

******************************************************************************
In this course, we shall always write [n] := {1, 2, 3, ..., n}. The size |X| of a finite set X

denotes the number of elements in X. Sometime we use the symbol “#” to express the word
“number”.

Binomial coefficients

• Let X be a set of size n. Define 2X := {A : A ⊂ X} and we show |2X | = 2|X| = 2n.

• Define
(
X
k

)
:= {A ⊂ X : |A| = k}.

• Fact: |
(
X
k

)
| =

(
n
k

)
= n!

k!(n−k)!
. That is: the binomial coefficient

(
n
k

)
denotes the number of

selections of size k out of n distinct elements.

In its proof, we also show that # of ordered k-tuple (x1, ..., xk) with xi ∈ X is equal to
(n)k := n(n− 1)...(n− k + 1).

• If n < k, then
(
n
k

)
= 0.

• Fact:
(
n
k

)
=
(

n
n−k

)
.

• Fact: 2n =
∑n

k=0

(
n
k

)
.

• Fact:
(
n
k

)
=
(
n−1
k−1

)
+
(
n−1
k

)
.

• We mention the Pascal Triangle, whose number in the nth row and kth column is the
binomial coefficient

(
n
k

)
. This is related to the previous fact.

• Fact: # of integer solutions (x1, x2, ..., xn) to x1 + x2 + ... + xn = k with each xi ∈ {0, 1}
is equal to the binomial coefficient

(
n
k

)
.

• Fact: # of integer solutions (x1, ..., xn) to equation x1 + ...+ xn = k with each xi ≥ 0
= # of labellings of k identical objects using n distinct labels =

(
n+k−1
n−1

)
We show two proofs of this. The first proof is a combinatorical argument (using k identical
“apples” and n − 1 “walls”). And in the second proof, we define a bijection from the set
of solutions to

(
[n+k−1]
n−1

)
.

Counting functions

• Define XY to be the set of all functions f : Y → X.
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• We also can view XY as the set of all strings x1x2...xr with elements xi ∈ X, indexed by
elements of Y .

• Fact: |XY | = |X||Y |.

• Fact: The number of injective functions f : [r]→ [n] is equal to (n)r.

• Definition (The Stirling number of the second kind). Let S(r, n) be the number of
partitions of [r] into n unordered non-empty parts.

• Exercise. S(r, 2) = 1
2

∑r−1
i=1

(
r
i

)
.

• Theorem. The number of surjective functions f : [r]→ [n] is equal to S(r, n)n!.

• Any injection f : X → X is called a Permutation of X (also a bijection).

We may view a permutation in two ways: it is a function from X to X; it also can be think
of an arrangement of the elements of X.

• The # of permutations of [n] is n!.

The Binomial Theorem

• Define [xk]f to be the coefficient of term xk in a polynomial f(x).

• Fact 1: Let f = f1f2...fn be a product of polynomials. Then

[xk]f =
∑

i1+...+in=k

(
n∏
j=1

[xij ]fj

)
.

• Fact 2: For j = 1, 2, ..., n, let

fj(x) :=
∑
i∈Ij

xi

be a polynomial (note the coefficient of each term is either 1 or 0), where Ij is a set
containing nonnegative integers (finite many or infinity). Let f(x) = f1f2...fn be the
product of polynomials.

Then [xk]f is the number of solutions (i1, ..., in) to i1 + ... + in = k with ij ∈ Ij for
j = 1, 2, ..., n.

• The Binomial Theorem. It holds for any real x and any positive integer n that

(1 + x)n =
n∑
k=0

(
n

k

)
xk.

In the proof we show, we use the Fact 2.
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• Fact.
(

2n
n

)
=
∑n

i=0

(
n
i

)2
.

We provide two proofs. The first one is a combinatorical proof, that uses a double-counting
some combinatorial object. In the second proof, we use the Fact 1 as well as the binomial
theorem.

• Exercise. (Vandermonde’s Convolution Formula)
(
n+m
k

)
=
∑k

j=0

(
n
j

)(
m
k−j

)
.

• Fact.
∑

all odd k

(
n
k

)
=
∑

all even k

(
n
k

)
= 2n−1.

• Exercise. n2n−1 =
∑n

k=1 k
(
n
k

)
.

Hint: use the derivatives of the binormial theorem.

Estimating the factorials

• Theorem. For any integer n ≥ 1,

e
(n
e

)n
≤ n! ≤ en

(n
e

)n
.

Here e = 2.71828... is the Euler/natural number. In it proof, we consider the curve of
y = lnx and use rectangles to approach the area bounded below by the curve y = lnx.

• Define f(n) ∼ g(n) for functions f and g if limn→∞
f(n)
g(n)

= 1.

• Stirling’s Formula. n! ∼
√

2πn
(
n
e

)n
.

• Exercise. For any integer n ≥ 1, n! ≤ e
√
n
(
n
e

)n
.

Modify the proof of the upper bound in previous theorem.

Estimating binomial coefficients

• Fact: For fixed integer n, view
(
n
k

)
as a function with k ∈ {0, 1, 2, ..., n}. It is increasing

when k ≤ bn/2c and decreasing when k ≥ dn/2e.
In particular,

(
n
k

)
achieves its maximum when k = dn/2e or bn/2c.

• Fact: 2n

n+1
≤
(
n
bn
2
c

)
≤ 2n.

It is a corollary of the previous fact.

• Exercise: 2n√
2n
≤
(
n
n
2

)
≤ 2n√

n
holds for even n.

It is a better estimate than the previous one.

• Fact: Using Stirling’s formula, we have
(
n
n
2

)
∼
√

2
π

2n√
n

• Fact:
(
n
k

)
≤ nk

k!

• Exercise. 1 + x ≤ ex holds for any real x. (Using calculus)
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• Theorem. For 1 ≤ k ≤ n, (n
k

)k
≤
(
n

k

)
≤
(en
k

)k
.

The upper bound can be derived from the facts that
(
n
k

)
≤ nk

k!
and k! ≥ e

(
k
e

)k
. It also can

be viewed as an immediate corollary of the following theorem.

• Theorem. For any 1 ≤ k ≤ n,(
n

0

)
+

(
n

1

)
+ ...+

(
n

k

)
≤
(en
k

)k
.

This is stronger than the previous upper bound. We prove it using Binomial Theorem (by
plugging in a proper value of x ∈ [0, 1]).

Inclusion-Exclusion and its applications

Let A1, ..., An be n subsets of the groud set Ω.

• Definition. Let A∅ = Ω; and for any nonempty subset I ⊆ [n], let

AI = ∩i∈IAi.

For any integer k ≥ 0, write

Sk =
∑
I∈([n]

k )

|AI |

to be the sum of the sizes of all k-fold intersections.

• Inclusion-Exclusion formula.

|A1 ∪ A2 ∪ ... ∪ An| =
n∑
k=1

(−1)k+1Sk.

Sometime we also use the following version of Inclusion-Exclusion formula,

|Ac1 ∩ Ac2 ∩ ... ∩ Acn| = |Ω\ (∪ni=1Ai) | =
n∑
k=0

(−1)kSk,

where Aci = Ω\Ai means the complement of subset Ai. We point out that S0 = |A∅| = |Ω|.
It also holds that

|Ac1 ∩ Ac2 ∩ ... ∩ Acn| =
∑
I⊂[n]

(−1)|I||AI |.
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• We show two proofs. In the first proof of this formula, we write A := A1 ∪ A2 ∪ ... ∪ An;
for any subset X ⊆ Ω, we define its characterization function 1X : Ω→ {0, 1} by assigning
1X(x) = 1 if x ∈ X and 1X(x) = 0 if x ∈ Ω\X. So we have

∑
x∈Ω 1X(x) = |X|. The key

ingredient in this proof is that

(1A − 1A1)(1A − 1A2)...(1A − 1An) = 0

holds for all x ∈ Ω. Then we expand the above product into a summation of 2n terms. By
summing over all x ∈ Ω, the above expression of 2n terms becomes the Inclusion-Exclusion
formula.

The second proof considers the contributions of each element a ∈ Ω to both sides. And we
show: for each a ∈ Ω, the contributions of a to both sides always equal.

• Definition. Let ϕ(n) be the number of integers m ∈ [n] which are relatively prime to n.
Here, m is relatively prime to n means that the greatest common divisor of m and n is 1.

• Fact: If n can be written as n = pa11 p
a2
2 ...p

at
t , where p1, ..., pt are distinct primes in [n], then

ϕ(n) = n
t∏
i=1

(
1− 1

pi

)
.

We proved this by considering Ω = [n] and the sets Ai = {m ∈ [n] : pi|m} for i = 1, ..., t.
Note that ϕ(n) = |Ω\ (∪ti=1Ai)|

• Definition. A permutation σ : X → X is called a derangement of X if σ(i) 6= i for any
i ∈ X. We use Dn to denote the set of all derangements of [n].

• Fact: For any integer n ≥ 1,

|Dn| = n!
n∑
k=0

(−1)k

k!
.

We apply inclusion-exclusion by considering Ai = {σ|σ(i) = i} for i = 1, ..., n.

• Fact: |Dn| ∼ n!
e

.

It is because limn→∞
|Dn|

(n!/e)
= e

∑∞
k=0

(−1)k

k!
= e · e−1 = 1, by Taylor’s series ex =

∑∞
k=0

xk

k!
.

• Recall. (i) S(n, k) is the number of partitions of a set of size n into k nonempty parts.

(ii) S(n, k)k! is the number of surjective functions from Y to X, where |Y | = n and |X| = k.

• Fact:

S(n, k) =
1

k!

k∑
i=0

(−1)i
(
k

i

)
(k − i)n.

To prove this, we use inclusion-exclusion (again!) by considering Ω = XY and its subsets
Ai := {f : Y → X\{i}}.
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• Exercise. If p is odd integer, then

|A1 ∪ A2 ∪ ... ∪ An| ≤
p∑

k=1

(−1)k−1Sk;

if p is even, then

|A1 ∪ A2 ∪ ... ∪ An| ≥
p∑

k=1

(−1)k−1Sk.

Generating functions

• Definition. The (ordinary) generating function (or GF for short) for an infinity sequence
a0, a1, ... is a power series

f(x) =
∑
n≥0

anx
n.

We have two ways to view the generating function.

(i). When the power series
∑

n≥0 anx
n converges (i.e., there exists a radius R > 0 of

convergence), we view G.F. as a function of x and we can apply operations of calculus on
it, including differentiation and integration. For example, in this case we know that

an =
f (n)(0)

n!
.

Also recall the following sufficient condition on the radius of convergence that if |an| ≤ Kn

for some constant K > 0, then
∑

n≥0 anx
n converges in the interval (− 1

K
, 1
K

).

(ii). When we are not sure of the convergence, we view G.F. as a formal object with
additions and multiplications. Let a(x) =

∑
n≥0 anx

n and b(x) =
∑

n≥0 bnx
n.

Addition.
a(x) + b(x) =

∑
n≥0

(an + bn)xn.

Multiplication. Let a(x)b(x) =
∑

n≥0 cnx
n, where

cn =
n∑
i=0

aibn−i.

• 1
1−x =

∑∞
k=0 x

k holds for any real x with |x| < 1. By the point view of (i), we can compute
the derivatives of two sides to get more identities, i.e. the first derivative will give

1

(1− x)2
=
∞∑
k=1

kxk−1.

• Exercise. For all integers k ≥ 0, let a2k = 0 and a2k+1 = 1. Find the GF of this sequence.
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• Recall the following facts:

Fact 1. If f(x) =
∏k

i=1 fi(x) for polynomials f1, ..., fk, then

[xn]f =
∑

i1+i2+...+ik=n

k∏
j=1

(
[xij ]fj

)
.

Fact 2. For j = 1, 2, ..., n, let

fj(x) :=
∑
i∈Ij

xi

where Ij is a set containing nonnegative integers. Let f(x) = f1f2...fn be the product.

Then [xk]f is the number of solutions (i1, ..., in) to i1 + ... + in = k with ij ∈ Ij for
j = 1, 2, ..., n.

• An equivalent form of the Fact 1, which will be very useful in the use of generating
functions.

For j = 1, 2, ..., n, let fj(x) =
∑

i∈Ij x
i. Define bk to be the number of solutions to i1 + i2 +

...+ in = k with each ij ∈ Ij. Then

k∏
j=1

fj(x) =
∞∑
k=0

bkx
k.

• Problem. Let a0 = 1 and an = 2an−1 for n ≥ 1. Find an.

We let f(x) =
∑
anx

n be the generating function. Then we show f(x) = 1 + 2xf(x),so
f(x) = 1

1−2x
, which implies that f(x) =

∑
2nxn and therfore an = 2n.

• From the above problem, we see one of the basic ideas for using GF: in order to find the
general expression of an, we work on its GF f(x); once we find the formula of f(x), then
we can expand f(x) into a power series and find an by choosing the coefficient of the right
term.

Recurrence relation and the Newton’s binomial theorem

• Problem. Let An be the set of strings of length n with entries from the set {a, b, c} and
with NO “aa” occuring (in the consecutive positions). Find an = |An| for n ≥ 1.

• We first observe that a1 = 3, a2 = 8 and for any n ≥ 2

an = 2an−1 + 2an−2,

therefore a0 = 1. Let f(x) =
∑

n≥0 anx
n. Then we use the recurrence relation to get

f(x) = 1 + 3x+ 2x(f(x)− 1) + 2x2f(x),
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which implies that

f(x) =
1 + x

1− 2x− 2x2
.

By Partial Fraction Decomposition, we calculate that

f(x) =
1−
√

3

2
√

3

1√
3 + 1 + 2x

+
1 +
√

3

2
√

3

1√
3− 1− 2x

,

which implies that

an =
1−
√

3

2
√

3

1√
3 + 1

(
−2√
3 + 1

)n
+

1 +
√

3

2
√

3

1√
3− 1

(
2√

3− 1

)n
.

Note that an must be an integer but its expression is of a combination of irrational terms!

Observe that
∣∣∣ −2√

3+1

∣∣∣ < 1, so
(
−2√
3+1

)n
→ 0 as n → ∞. Thus, when n is sufficiently large,

an is about the value of the second term 1+
√

3
2
√

3
1√
3−1

(
2√
3−1

)n
; equivalently an will be the

nearest integer to that.

• Definition. For any real r and integer k ≥ 0, let(
r

k

)
=
r(r − 1)...(r − k + 1)

k!
.

• Newton’s Binomial Theorem. For any real r,

(1 + x)r =
∞∑
k=0

(
r

k

)
xk

holds for any x ∈ (−1, 1).

The proof is using Taylor series which we did not cover. Note that the Binomial Theorem
says that for positive integer n, (1 + x)n =

∑∞
k=0

(
n
k

)
xk holds for any real x!

• Corollary. Let r = −n for integer n ≥ 0. Then
(−n
k

)
= (−1)k

(
n+k−1

k

)
. Therefore

(1 + x)−n =
∞∑
k=0

(−1)k
(
n+ k − 1

k

)
xk.
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