Combinatorics, 2015 Fall, USTC
Outlines in Weeks 1-2
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Notice: This writing outlines the materials of our lectures, but often does not contain the
detailed proofs of statements we proved! All proofs present in lectures may appear in exams.
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In this course, we shall always write [n] := {1,2,3,...,n}. The size |X| of a finite set X
denotes the number of elements in X. Sometime we use the symbol “#” to express the word
“number”.

Binomial coefficients

Let X be a set of size n. Define 2% := {4 : A C X} and we show [2¥| = 21X| = 27,
Define ()k() ={ACX:|Al =k}

Fact: \()k()\ =(}) = k!(%k)' That is: the binomial coefficient () denotes the number of

selections of size k out of n distinct elements.
In its proof, we also show that # of ordered k-tuple (z1,...,zx) with z; € X is equal to
(n)g:=n(n—1)..(n —k+1).

If n < k, then (Z) =0.

Fact: (") = ( " )

k n—k

Fact: 2" =37, (7).
. (n\ _ (n—1 n—1
Fact: (3) = (37,) + (", )-
We mention the Pascal Triangle, whose number in the nth row and kth column is the
binomial coefficient (Z) This is related to the previous fact.

Fact: # of integer solutions (z1,zs,...,x,) to 1 + 9 + ... + x,, = k with each z; € {0,1}
is equal to the binomial coefficient (Z)

Fact: # of integer solutions (1, ...,x,) to equation =7 + ... + z,, = k with each z; > 0

= # of labellings of k identical objects using n distinct labels = (”:f;l)

We show two proofs of this. The first proof is a combinatorical argument (using k identical
“apples” and n — 1 “walls”). And in the second proof, we define a bijection from the set

of solutions to ([”:ﬁl]).

Counting functions

Define XY to be the set of all functions f : Y — X.



We also can view XY as the set of all strings x125...7, with elements z; € X, indexed by
elements of Y.

Fact: | XY | = |X|V]
Fact: The number of injective functions f : [r] — [n] is equal to (n),.

Definition (The Stirling number of the second kind). Let S(r,n) be the number of
partitions of [r| into n unordered non-empty parts.

Exercise. S(r,2) =1 3771 (7).
Theorem. The number of surjective functions f : [r] — [n] is equal to S(r,n)n!.

Any injection f: X — X is called a Permutation of X (also a bijection).

We may view a permutation in two ways: it is a function from X to X; it also can be think
of an arrangement of the elements of X.

The # of permutations of [n] is nl.

The Binomial Theorem

Define [2*]f to be the coefficient of term z* in a polynomial f(z).

Fact 1: Let f = fifs...f, be a product of polynomials. Then

"] f = Z <H[9‘7ij]fj>-

i1 tin=k \j=1

Fact 2: For j =1,2,...,n, let

fiw) =34

iel;
be a polynomial (note the coefficient of each term is either 1 or 0), where [; is a set

containing nonnegative integers (finite many or infinity). Let f(z) = fifs...fn be the
product of polynomials.

Then [2¥]f is the number of solutions (iy,...,i,) to i + ... + 4, = k with i; € I; for
j=1.2 ..n

The Binomial Theorem. It holds for any real x and any positive integer n that
“/n
14 2x)" = ok,
=30 ())

In the proof we show, we use the Fact 2.



o Fact. (7)) =1, (1)"
We provide two proofs. The first one is a combinatorical proof, that uses a double-counting

some combinatorial object. In the second proof, we use the Fact 1 as well as the binomial
theorem.

e Exercise. (Vandermonde’s Convolution Formula) ("}™) = Z?:o (’;) (k"fj)
o Fact. > jaa (Z) = 2 all even & (Z) =2"h

e Exercise. n2" ! = Zzzl k(Z)

Hint: use the derivatives of the binormial theorem.

Estimating the factorials

e Theorem. For any integer n > 1,

ny\" ny\"
e(—) §n!§en(—> .
e e
Here e = 2.71828... is the Euler/natural number. In it proof, we consider the curve of
y = Inx and use rectangles to approach the area bounded below by the curve y = Inx.
e Define f(n) ~ g(n) for functions f and g if lim,_, £ = 1,

e Stirling’s Formula. n! ~ v/27mn (%)n

n

e Exercise. For any integer n > 1, n! < ey/n (%)
Modify the proof of the upper bound in previous theorem.

Estimating binomial coefficients

e Fact: For fixed integer n, view (Z) as a function with k£ € {0,1,2,...,n}. It is increasing
when k < |n/2] and decreasing when k > [n/2].

In particular, (7) achieves its maximum when k = [n/2] or [n/2].

k
.20 n n
o Fact: 27 < () <2".
It is a corollary of the previous fact.
f 2 n on
e FExercise: o < (%) < T holds for even n.

It is a better estimate than the previous one.
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e Fact: Using Stirling’s formula, we have (Z) ~A\ wom
2

e Fact: (}) < Z_;:
e Exercise. 1+ z < €” holds for any real x. (Using calculus)
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e Theorem. For 1 < k <n,
n\k n en\k
) <) =(%)
k k k
The upper bound can be derived from the facts that (Z) < T;i_]: and k! > e (f)lC It also can
be viewed as an immediate corollary of the following theorem.

e Theorem. For any 1 < k < n,

n n n P ny o (en)k
0 1 k) — \k/
This is stronger than the previous upper bound. We prove it using Binomial Theorem (by

plugging in a proper value of = € [0, 1]).

Inclusion-Exclusion and its applications

Let Aq,..., A, be n subsets of the groud set €.

e Definition. Let Ay = Q; and for any nonempty subset I C [n], let
Ar = NierA;.

For any integer k£ > 0, write
Se= D |4
re(f)
to be the sum of the sizes of all k-fold intersections.

e Inclusion-Exclusion formula.

n

AU AU L UA,| =D (—1)*1s,.

k=1
Sometime we also use the following version of Inclusion-Exclusion formula,

n

AN AN LN AS] = O\ (U A | =D (—1)FS,

k=0

where A¢ = Q\ A; means the complement of subset A;. We point out that Sy = |Ag| = [€].
It also holds that
[ASnAsN L NAL =) (=14

IC[n]



We show two proofs. In the first proof of this formula, we write A := A; U Ay U ... U Ay;
for any subset X C Q, we define its characterization function 1y :  — {0, 1} by assigning
1x(z) =1if x € X and 1x(x) = 0 if z € Q\X. So we have ) _,1x(x) = [X]|. The key
ingredient in this proof is that

(1g—14)(1a—14,)...(1a—14,)=0

holds for all z € ). Then we expand the above product into a summation of 2" terms. By
summing over all z € €2, the above expression of 2" terms becomes the Inclusion-Exclusion
formula.

The second proof considers the contributions of each element a € €2 to both sides. And we
show: for each a € €, the contributions of a to both sides always equal.

Definition. Let ¢(n) be the number of integers m € [n| which are relatively prime to n.
Here, m is relatively prime to n means that the greatest common divisor of m and n is 1.

Fact: If n can be written as n = p{'py...p*, where py, ..., p; are distinct primes in [n], then

n):n}i(l—%).

We proved this by considering 2 = [n] and the sets A; = {m € [n] : p;lm} fori =1,...,¢.
Note that ¢(n) = |Q\ (U'_; A4;)|

Definition. A permutation o : X — X is called a derangement of X if o(i) # i for any
i€ X. We use D, to denote the set of all derangements of [n].

Fact: For any integer n > 1,
= n! ~ 7
|D,| = n! kg o
=0

We apply inclusion-exclusion by considering A; = {o|o(i) =i} fori=1,...,n

Fact: |D,|~ ™.

It is because lim,, o ‘n,/"e‘) =edy oy kl,)k =e-e ' =1, by Taylor’s series e” = > "2 9,”6—’,6
Recall. (i) S(n, k) is the number of partitions of a set of size n into k nonempty parts.

(ii) S(n, k)k! is the number of surjective functions from Y to X, where |Y| = n and | X| = k.

Fact: i
S(n, k) = % ;(—w (’:) (h— i)™,

To prove this, we use inclusion-exclusion (again!) by considering 2 = XY and its subsets

A ={f:Y = X\{i}}.



e Exercise. If p is odd integer, then

p
|[AjUAU.LUA,| < Z<_1)k_15k;

k=1
if p is even, then

p
AT U Ay U U A, > ) (—1D)FS,.
k=1

Generating functions

e Definition. The (ordinary) generating function (or GF for short) for an infinity sequence

ap, G1, ... 1S & power series
f(z) = Z apx".

n>0

We have two ways to view the generating function.

(i). When the power series ) . a,z" converges (i.e., there exists a radius R > 0 of
convergence), we view G.F. as a function of x and we can apply operations of calculus on
it, including differentiation and integration. For example, in this case we know that

()

n!
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Also recall the following sufficient condition on the radius of convergence that if |a,| < K™
for some constant K > 0, then } ,a,z" converges in the interval (— %, %)
(ii). When we are not sure of the convergence, we view G.F. as a formal object with
additions and multiplications. Let a(x) =Y o an,2™ and b(x) = > -, bpa™.

Addition.
a(z) +b(z) = Z(an + by)z".

n>0

Multiplication. Let a(x)b(x) = }_, -, c,2™, where

n
Cp = E aibn_,-.
=0

o =37, 2" holds for any real z with |z| < 1. By the point view of (i), we can compute
the derivatives of two sides to get more identities, i.e. the first derivative will give

1 = k—1
T VL
k=1

e Exercise. For all integers k > 0, let agr, = 0 and agxy1 = 1. Find the GF of this sequence.
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e Recall the following facts:
Fact 1. If f(z) = Hle fi(z) for polynomials fi, ..., fi, then

= 3 T

i1+ig+...+ig=n

Fact 2. For 7 =1,2,...,n, let

O

i€l
where [; is a set containing nonnegative integers. Let f(x) = fi f2...f, be the product.
Then [z*]f is the number of solutions (i, ...,i,) to i1 + ... + i, = k with i; € [; for
j=12..n.
e An equivalent form of the Fact 1, which will be very useful in the use of generating
functions.

For j =1,2,...,n, let fj(zx) = Eielj 2t Define b, to be the number of solutions to i; + iy +
... + 14, = k with each i; € I;. Then

k 00
[ 5i(x) = bea®.
=1 k=0

e Problem. Let ag = 1 and a,, = 2a,,_; for n > 1. Find a,,.

We let f(x) = > a,a™ be the generating function. Then we show f(z) = 1 + 2z f(x),s0
f(xz) = =5, which implies that f(z) = Y 2"z" and therfore a,, = 2".

e From the above problem, we see one of the basic ideas for using GF: in order to find the
general expression of a,, we work on its GF f(x); once we find the formula of f(x), then
we can expand f(z) into a power series and find a,, by choosing the coefficient of the right
term.

Recurrence relation and the Newton’s binomial theorem

e Problem. Let A, be the set of strings of length n with entries from the set {a,b,c} and
with NO “aa” occuring (in the consecutive positions). Find a,, = |A,| for n > 1.

e We first observe that a; = 3,a, = 8 and for any n > 2
Up = 201 + 20,2,
therefore ag = 1. Let f(z) =), -, an2". Then we use the recurrence relation to get

f(x) =143+ 2z(f(x) — 1) + 227 f(2),



which implies that
14+
1@ =5 =5

By Partial Fraction Decomposition, we calculate that

1—+3 1 14++3 1

f(z) = 23 \/§+1+2:13+ 2/3 V3—-1-22

which implies that

1-v3 1 ( —2 )”+1+\f 1 ( 2 )”
a, = .
2v3 V3+1\V3+1 2v3 V3-1\v3-1
Note that a, must be an integer but its expression is of a combination of irrational terms!
Observe that ‘

7l < 1, so (\/§+1> — 0 as n — oo. Thus, when n is sufficiently large,

n
a, is about the value of the second term Ltv3_1 ( 2 > ; equivalently a,, will be the

2v3 V3-1 \v3-1
nearest integer to that.

Definition. For any real r and integer k£ > 0, let

(Z) (- 1)..5 —k+1)

Newton’s Binomial Theorem. For any real r,
-2 ()7
k=0

The proof is using Taylor series which we did not cover. Note that the Binomial Theorem
says that for positive integer n, (1+2)" = Y~ (7)=* holds for any real !

1+9c

Mg

holds for any = € (—1,1).

e Corollary. Let r = —n for integer n > 0. Then (") = (—1)’“(”“;71). Therefore

o =S (M)

k=0



